[Monika,1(4): Jun., 2012]
ISSN: 2277-9655

u

& IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Innovative Technique of Message Passing I n Loosely Coupled System
Monika Arya*
Department of Computer Science, Azad Instituterafieering & Technology, Lucknc
monika_a20@rediffmail.com
Abstract

The basic idea is that whenever we think aboutidiged system then we say that it is collectiotooBely couplec
processors wheratier processor communication takes place by megsaggng process. Now what happen is
whenever we try to pass message in any user defiistdbuted system then the user is forced to system's
specific objects for message passing. What we rto say is user cannot use his or her own objecetpasses ¢
message. Now here we try to solve this problemgusinnovative Techniques of message passing in loc
coupled systethtechnique. That is we are now capable of passs®g defined objectn user designed distribut
system.

Keyword:

. Introduction
A system of processes in which the interactionssately through messages is often called lo-coupled. Such
systems are attractive from a programming viewpdiiiey are designed by decomposing a fication into its
separable concerns, each of whimould then be implemented by a process; the tperaf the system can |
understood by asserting properties of the messageesces transmitted among the component procesdesy
attribute of looselycoupled systems is a guarantee that a messat has been sent cannot be unsent. /
consequence, a process can commence its computationreceiving a message, with the guaranteenthéiture
message it receives will require it to undo itsypyes computations [1
Basically in this we try to dee the problems of Remote Method Invoca (RMI), i.e. in general RMI user cann
pass user defined parameters or objects in remetieaals [1] Here we try to pass the user defines objects amer
entities as parameters of RMI methq

. Existing System

R erence

Communicaticn
- L]

Tnva<e/Reply

When invoking remote methods, primitive data types passed by value. Hence, any changes to theoddte
remote host are not reflected at the original h®stond, to pass an object to a remote method lbg vilne objec
must implement the java lan§erializabl' interface. As before, changes to the object's aufiynot propagate t
the local object. Finally, if we want to pass arneab over the network by remote reference, the ahjaust be a
exported remote object (extend theicas Remote Objectlass), and must implement a remote interface (w
extends javarmi.RemateA stub for the remote object will be serializeud passed to the remote host. The rel
host can then use that stub to invoke methods iofeanote object. Thelis only one copy of the data at any tir
which means that all hosts are updating the sarae[8E

http: // wwwe.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[205-209]

[Monika,1(4): Jun., 2012]
ISSN: 2277-9655

[1. Remote M ethod I nvocation (Rmi)
Remote Method Invocation (RMI) allows a Java obgdacutes on one machine to invoke a method ofaaghject

that executes on another machine. This is an imapbfeature, because it allows building distribuapglication [2].

IV.A Simple Client/Server Application Using Rmi
This section provides step-by-step directions foilding a simple client/server application by usiRill. The
server receives a request from a client, procassaesd returns a result. In this example, the estjspecifies two
numbers. The server adds these together and rehassim [2].

Step One: Enter and Compile the Source Code

This application uses four source files. The fiilt, ADDSERVERIntf.java, defines the remote inted that is
provided by the server. It contains one method déleaepts twalouble arguments and returns their sum. All remote
interfaces must extend the Remote interface, wisighart of java.rmi. Remote defines ho memberspligose is
simply to indicate that an interface uses remotthots. All remote methods can throw a RemoteExoaf#].

import java.rmi.*;

public interface AddServerintf extends Remote {

double add(double d1,double d2) throws Remoteftiame
}

The second file, AddServerimpl.java, implemethis remote interface. The implementation of the(gduethod
is straightforward. All remote objects must extéhtcastremoteObject, which provides functionallgttis needed
to make objects available from remote machines.
import java.rmi.*;
import java.rmi.server.*,
public class AssServerimpl extends UnicastRemote@bj

implements AddServerintf {

public AddServerimpl() throws RemoteExceptipn

}

Public double add(double d1, double d2) throws\&eException {

}

}

The third source file, AddServer.java, contains itfen program for the server machine. Its primanyction is to
update the RMI registry on that machine. This iselby using the rebind() method of the Namingstfasind in
java.rmi). That method associates a name with gecobeference. The first argument to the rebind{ethod is a
string that names the server as “AddServer”. It®sd argument is a reference to an instance of Addsimpl.
import java.net.*;
import jave .rmi.*;
public class AddServer {

public static void main(String args[]) {
try {

AddServerimpl addServerimpl = new AddServerimpl()

Naming. rebind(“AddServer”,addServerimpl);
}
catch(Exception e) {

System.out.printin(“"Exception: “ +e);
11}
The fourth source file, AddClient.java, implemerit® client side of this distributed application. d&lient.java
requires three command-line arguments. The firthaslP address or name of the server machines&bend and
third arguments are the two numbers that are ®ub@med.

http: // wwwe.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[205-209]

[Monika,1(4): Jun., 2012]
ISSN: 2277-9655

The application begins by forming a string thatdais the URL syntax. This URL uses the rmi protoddie string
includes the IP address or name of the server landtting “AddServer”. The program then invokes ltakup()
method of the Naming class. This method acceptsaogiement, the rmi URL, and returns a referencantabject
of type AddServerintf. All remote methor invocatiooan then be directed to this object.
The program continues by displaying its argumentstaen invokes the remote add() method. The sumturned
from this method and is then printed.
import java.rmi.*;
public class AddClient {
public static void main (String args []) {
try {
string addServerURL= “rmi://"+args[0] + “/AddBer”;
AddServerintf addServerintf= (AddServerintf) Niag.lookup(addServerURL);
System.out.printin(“The first number is ;" +aftj]);
double d1=Double.valueof(args[1]).doubleValue(
System.out.printin(“The Second number is : {§s§2]);
double d2= Double.valueof(args[2]).doubleValhe(
System.out.printin(*“The sum is:” + addServefthdd(d1,d2));
}
catch (Exception e) {
System.out.printin(“Exception: “+e);
m

After you enter all the code, use javac to comiefour source that you created.

Step Two: Generate a Stub
Before, you can use the client and server; you mestrate the necessary stub. In the context of, Rlstub is a
java object that resides on the client machinefutetion is to present the same interfaces agdhwte server.
Remote method calls initiated by the client araialty directed to the stub. The stub works with titlkeer parts of
the RMI system to formulate a request that is settie remote machine.
A remote method may accept arguments that are sityples or objects. In the latter case, the ohjexy have
references to other objects. All of this informatimust be sent to the remote machines. That ispgatt passed as
an argument to a remote method call must be sexthiind sent to the remote machine.
If a response must be returned to the client, thecgss works in reverse. Note that the serialinatmd
deserialization facities are also used if objeotsraturned to a client.
To generate a stub, using a tool called the RMIgi@n which is invoked from the command line, hswn here:
rmic AddServerimpl

This command generates the file AddServerlmpl_$taks. When using rmic, be sure that CLASSPATH is
set to include the current directory [2].

Step Three: Install Files on the Client and SeMachines

Copy Addclient.class, AddServerimpl_Stub.class, &adiServerintf.class to a directory on the clierdcmne.
Copy AddServerlntf.class, AddServerimpl.class, Aeid®rimpl_Stub.class, and AddServer.class to aidirg on
the server machine.

Step Four: Start the RMI Registry on the Server hitae

A program called rmiregistry, which executes on $ieever machine. It maps names to object refererkiest,
check that the CLASSPAth environment variable ideki the directory in which files are located. Tistart the
RMI registry from the command line, as shown he@iSmiregistry [2]

Step Five: Start the Server

http: // wwwe.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[205-209]

[Monika,1(4): Jun., 2012]
ISSN: 2277-9655

The server code is started from the command lieshawn here:
Java AddServer
Recall that the AddServer code instantiates AddS&npl and Registers that object with the name “Belicdver”.

Step Six: Start the Client

The AddClient software requires three arguments: ihme or IP address of the server machine andwbe
numbers that are to be summed together.

java AddClient server 1 8 9

java AddClient 11.12.13.14 8 9

In the first line, the name of the server is preddThe second line uses its IP address (11.12013.1

This example can try without having a remote serVerdo so, start rmiregistry, start AddServer, #meh execute
AddClient using command line.

Java AddClient 127.0.0.1 89

Here, the address 127.0.0.1 is the “loop back” eskifor the local machine. Using this address alltmwexercise
the entire RMI mechanism without actually havingrtstall the server on a remote computer.

In either case, sample output from this prograshswn here:

The first number is: 8

The Second number is: 9

The sumis: 17.0

V. Problem Description
In Remote methods one cannot pass user definetslaieparameters. If user wants to pass the uSae adjects, the

server gives the error.

In computer science, loose coupling (or looselypted) is a type of coupling that describes howtiplel computer
systems, even those using incompatible technolpgiesy be joined together for transactions, regasdle
of hardware, software and other functional comptsiehoosely coupled systems describe those thak war an
exchange relationship where little input is neeffedh each of the additional systems. In a looselypted system
hardware and software may interact but they aredependant on each other to work. Computers inaank are
considered loose-coupled systems as a client machay request data from the server, but the twiesysalso work
independently of each other.

In software terminology, loosely coupled refers doftware where routines, modules, functions, amdilar
components are executed only as needed, and damat the launch of the software application amdenit is being
used. Web services are a type of software applicatiat uses loose coupling.

VI. Proposed System

From above discussions we can easily see thatam@tpass user define objects as parameters oteamethods.
In our system we try to fabricate a system usingchvlone could easily pass user defined objectsasanpeters
through RMI.

http: // wwwe.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[205-209]

[Monika,1(4): Jun., 2012]
ISSN: 2277-9655

RMI Sytem Proposed System

e int add(int a, int b) ---protoype correct for ¢ Helps in doing the second prototyping|in
java RMI which used defined object par is passed

e int add(parameter par) in remote method as parameter.
» User defined object (UDO) transfer |is
user defmed object(UDO) not possible in RMI but possible in our

proposed system.

This cannot be done in Java RMI e« System A System B
v Transfer

e SystemA System B ubo — Possible

Transfer

UDO ——— Mot Possible

VII. References

[1]. Loosely-Coupled Processes Jayadev MisraDematrof Computer Sciences The University of Texas at
Austin Austin, Texas 78712 (512) 471-9547 misra@esas.edu

[2]. “The complete Reference”, Herbert Schild

http://www.cs.bgu.ac.il/~spl121/RMI

http: // wwwe.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[205-209]

